Assignment 2

Exercise 2.1

- 1. Solve $u_{tt} = c^2 u_{xx}$, $u(x, 0) = e^x$, $u_t(x, 0) = \sin x$.
- 2. Solve $u_{tt} = c^2 u_{xx}$, $u(x, 0) = \log(1 + x^2)$, $u_t(x, 0) = 4 + x$.
- 5. (The hammer blow) Let $\phi(x) \equiv 0$ and $\psi(x) = 1$ for |x| < a and $\psi(x) = 0$ for $|x| \ge a$. Sketch the string profile (u versus x) at each of the successive instants t = a/2c, a/c, 3a/2c, 2a/c, and 5a/c. [Hint: Calculate

$$u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds = \frac{1}{2c} \{ \text{length of } (x-ct, x+ct) \cap (-a, a) \}.$$

Then u(x, a/2c) = (1/2c) {length of $(x - a/2, x + a/2) \cap (-a, a)$ }. This takes on different values for |x| < a/2, for a/2 < x < 3a/2, and for x > 3a/2. Continue in this manner fro each case.]

- 6. In Exercise 5, find the greatest displacement, $\max_{x} u(u, t)$, as a function of t.
- 7. If both ϕ and ψ are odd functions of x, show that the solution u(x,t) of the wave equation is also odd in x for all t.
- 8. A spherical wave is a solution of the three-dimensional wave equation of the form u(r, t), where r is the distance to the origin (the spherical coordinate). The wave equation takes the form

$$u_{tt} = c^2 \left(u_{rr} + \frac{2}{r} u_r \right)$$
 ("spherical wave equation").

- (a) Change variables v = ru to get the equation for v: $v_{tt} = c^2 v_{rr}$.
- (b) Solve for v using (3) and thereby solve the spherical wave equation.
- (c) Use (8) to solve it with initial conditions $u(r,0) = \phi(r)$, $u_t(r,0) = \psi(r)$, taking both $\phi(r)$ and $\psi(r)$ to be even functions of r.

(*Hint*: Factor the operator as we did for the wave equation.)

10. Solve $u_{xx} + u_{xt} - 20u_{tt} = 0$, $u(x, 0) = \phi(x)$, $u_t(x, 0) = \psi(x)$.

Exercise 2.2

- 1. Use the energy conservation of the wave equation to prove that the only solution with $\phi \equiv 0$ and $\psi \equiv 0$ is $u \equiv 0.$ (*Hint*: Use the first vanishing theorem in Section A.1.)
- 2. For a solution u(x,t) of the wave equation with $\rho = T = c = 1$, the energy density is defined as $e = \frac{1}{2}(u_t^2 + u_x^2)$ and the momentum density as $p = u_t u_x$.
 - (a) Show that $\partial e/\partial t = \partial p/\partial x$ and $\partial p/\partial t = \partial e/\partial x$.
 - (b) Show that both e(x,t) and p(x,t) also satisfy the wave equation.
- 3. Show that the wave equation has the following invariance properties.
 - (a) Any translate u(x y, t), where y is fixed, is also a solution.
 - (b) Any derivative, say u_x , of a solution is also a solution.
 - (c) The dilated function u(ax, at) is also a solution, for any constant a.

identity

5. For the *damped* string, equation (1.3.3), show that the energy decreases.

Exercise 2.3

- 2. Consider a solution of the diffusion equation $u_t = u_{xx}$ in $\{0 \le x \le l, 0 \le t < \infty\}$.
 - (a) Let M(T) = the maximum of u(x,t) in the closed rectangle $\{0 \le x \le l, 0 \le t \le T\}$. Does M(T) increase or decrease as a function of T?
 - (b) Let m(T) = the minimum of u(x,t) in the closed rectangle $\{0 \le x \le l, 0 \le t \le T\}$. Does m(T) increase or decrease as a function of T?
- 3. Consider the diffusion equation $u_t = u_{xx}$ in the interval (0, 1) with u(0, t) = u(1, t) = 0 and $u(x, 0) = 1-x^2$. Note that this initial function does not satisfy the boundary condition at the left end, but that the solution will satisfy it for all t > 0.
 - (a) Show that u(x,t) > 0 at all interior points $0 < x < 1, 0 < t < \infty$.
 - (b) For each t > 0, let $\mu(t) =$ the maximum of u(x,t) over $0 \le x \le 1$. Show that $\mu(t)$ is a decreasing (i.e., nonincreasing) function of t. (*Hint*: Let the maximum occur at the point X(t), so that $\mu(t) = u(X(t), t)$. Differentiate $\mu(t)$, assuming that X(t) is differentiable.)
 - (c) Draw a rough sketch of what you think the solution looks like (u versus x) at a few times. (If you have appropriate software available, compute it.)
- 4. Consider the diffusion equation $u_t = u_{xx}$ in $\{0 < x < 1, 0 < t < \infty\}$ with u(0,t) = u(1,t) = 0 and u(x,0) = 4x(1-x).
 - (a) Show that 0 < u(x,t) < 1 for all t > 0 and 0 < x < 1.
 - (b) Show that u(x,t) = u(1-x,t) for all $t \ge 0$ and $0 \le x \le 1$.
 - (c) Use the energy method to show that $\int_0^1 u^2 dx$ is a strictly decreasing function of t.
- 5. The purpose of this exercise is to show that the maximum principle is not true for the equation $u_t = x u_{xx}$, which has a variable coefficient.
 - (a) Verify that $u = -2xt x^2$ is a solution. Find the location of its maximum in the closed rectangle $\{-2 \le x \le 2, 0 \le t \le 1\}$.
 - (b) Where precisely does our proof of the maximum principle break down for this equation?
- 6. Prove the comparison principle for the diffusion equation: If u and v are two solutions, and if $u \le v$ for t = 0, for x = 0, and for x = l, then $u \le v$ for $0 \le t < \infty$, $0 \le x \le l$.
- 7. (a) More generally, if $u_t ku_{xx} = f$, $v_t kv_{xx} = g$, $f \leq g$ and $u \leq v$ at x = 0, x = l and t = 0, prove that $u \leq v$ for $0 \leq x \leq l, 0 \leq t < \infty$.
 - (b) If $v_t v_{xx} \ge \sin x$ for $0 \le x \le \pi$, $0 < t < \infty$, and if $v(0,t) \ge 0$, $(\pi,t) \ge 0$ and $v(x,0) \ge \sin x$, use part (a) to show that $v(x,t) \ge (1 e^{-t} \sin x)$.
- Extra 1. Consider the diffusion equation $u_t = ku_{xx} + au$ in $(0 < x < 1, 0 < t < \infty)$ with u(0, t) = u(1, t) = 0 and $u(x, 0) = sin(\pi x)$ where $k > 0, a \le 0$.
 - (1)Show that $0 < u(x,t) < 1, \forall t > 0, 0 < x < 1.$
 - (2)Show that $u(x,t) = u(1-x,t), \forall t \ge 0, 0 \le x \le 1$.
- Extra 2. (a) Prove the following generalized Maximum Principle: if $u_t ku_{xx} \leq 0$ in $R = [0, l] \times [0, T]$, where k > 0, then

$$\max_{R} u(x,t) = \max_{\partial R} u(x,t)$$

(b)Show that if v(x,t) satisfies

$$v_t = kv_{xx} + f(x,t), -\infty < x < +\infty, 0 < t < T$$
$$v(x,0) = 0$$

then $v(x,t) \le T \max_{-\infty < x < +\infty, 0 < t < T} f(x,t)$

Exercise 2.4

1. Solve the diffusion equation with the initial condition

$$\phi(x) = 1$$
 for $|x| < l$ and $\phi(x) = 0$ for $|x| > l$.

Write your answer in terms of $\mathscr{E}rf(x)$.

- 2. Do the same for $\phi(x) = 1$ for x > 0 and $\phi(x) = 3$ for x < 0.
- 5. Prove properties (a) to (e) of the diffusion equation (1).
- 8. Show taht for any fixed $\delta > 0$ (no matter how small),

$$\max_{\delta \le |x| < \infty} S(x, t) \to 0 \qquad \text{as } t \to 0.$$

[This means that thee tail of S(x,t) is "uniformly small".]

- 11. (a) Consider the diffusion equation on the whole line with the usual initial condition $u(x,0) = \phi(x)$. If $\phi(x)$ is an odd function, show that the solution u(x,t) is also an odd function of x. (*Hint*: Consider u(-x,t) + u(x,t) and use the uniqueness.)
 - (b) Show that the same is true if "odd" is replaced by "even".
 - (c) Show that the analogous statements are true for the wave equation.
- 14. Let $\phi(x)$ be a continuous function such that $|\phi(x)| \leq Ce^{ax^2}$. Show that formula (8) for the solution of the diffusion equation makes sense for 0 < t < 1/(4ak), but not necessarily for larger t.
- 15. Prove the uniqueness of the diffusion problem with Neumann boundary conditions:

$$u_t - k_{xx} = f(x,t)$$
 for $0 < x < l, t > 0$ $u(x,0) = \phi(x)$
 $u_x(0,t) = g(t)$ $u_x(l,t) = h(t)$

by the energy method.

16. Solve the diffusion equation with constant dissipation:

$$u_t - ku_{xx} + bu = 0$$
 for $-\infty < x < \infty$ with $u(x, 0) = \phi(x)$,

where b > 0 is a constant. (*Hint*: Make the change of variables $u(x,t) = e^{-bt}v(x,t)$.)

18. Solve the heat equation with convection:

 $u_t - ku_{xx} + Vu_x = 0$ for $-\infty < x < \infty$ with $u(x, 0) = \phi(x)$,

where V is a constant.(*Hint*:Go to a moving frame of reference by substituting y = x - Vt.)

Exercise 2.5

1. Show that there is no maximum principle for the wave equation.

Suggested Solution to Assignment 2

Exercise 2.1

1. By d'Alembert's formula, the solution is

$$u(x,t) = \frac{1}{2} [e^{x+ct} + e^{x-ct}] + \frac{1}{2c} \int_{x-ct}^{x+ct} \sin s ds$$
$$= \frac{1}{2} [e^{x+ct} + e^{x-ct}] + \frac{1}{2c} [\cos(x-ct) - \cos(x+ct)]. \quad \Box$$

2. By d'Alembert's formula, the solution is

$$u(x,t) = \frac{1}{2} \{ \log[1 + (x + ct)^2] + \log[1 + (x - ct)^2] \} + \frac{1}{2c} \int_{x - ct}^{x + ct} (4 + s) ds$$
$$= \frac{1}{2} \{ \log[1 + (x + ct)^2] + \log[1 + (x - ct)^2] \} + 4t + xt. \quad \Box$$

5. By d'Alembert's formula, the solution is

$$u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds = \frac{1}{2c} [\text{length of } (x-ct, x+ct) \cap (-a,a)]$$

So we have

$$u(x, a/2c) = \begin{cases} 0 & x \in (-\infty, -\frac{3a}{2}] \cup [\frac{3a}{2}, \infty); \\ \frac{1}{2c}(\frac{3a}{2} - x) & x \in [\frac{a}{2}, \frac{3a}{2}]; \\ \frac{a}{2c} & x \in [-\frac{a}{2}, \frac{a}{2}]; \\ \frac{1}{2c}(\frac{3a}{2} + x) & x \in [-\frac{3a}{2}, -\frac{a}{2}]; \\ \frac{1}{2c}(\frac{3a}{2} + x) & x \in [-\frac{3a}{2}, -\frac{a}{2}]; \\ \frac{1}{2c}(\frac{5a}{2} - x) & x \in [\frac{a}{2}, \frac{5a}{2}] \cup [\frac{5a}{2}, \infty); \\ \frac{1}{2c}(\frac{5a}{2} - x) & x \in [\frac{a}{2}, \frac{5a}{2}]; \\ \frac{1}{2c}(\frac{5a}{2} - x) & x \in [\frac{a}{2}, \frac{5a}{2}]; \\ \frac{1}{2c}(\frac{5a}{2} + x) & x \in [-\frac{5a}{2}, -\frac{a}{2}]; \\ \frac{1}{2c}(\frac{5a}{2} + x) & x \in [-\frac{5a}{2}, -\frac{a}{2}]; \\ \frac{1}{2c}(\frac{5a}{2} + x) & x \in [-\frac{5a}{2}, -\frac{a}{2}]; \\ u(x, 5a/c) = \begin{cases} 0 & x \in (-\infty, -6a] \cup [6a, \infty); \\ \frac{1}{2c}(6a - x) & x \in [4a, 6a]; \\ \frac{a}{c} & x \in [-4a, 4a]; \\ \frac{1}{2c}(6a + x) & x \in [-6a, -4a]; \end{cases}$$

Here we omit the figures. \Box

6.

$$\max_{x} u(x,t) = \begin{cases} t & 0 \le t \le \frac{a}{c}; \\ \frac{a}{c} & t \ge \frac{a}{c}. \end{cases} \square$$

7. Since ϕ and ψ are odd function of x,

$$\begin{aligned} u(-x,t) &= \frac{1}{2} [\phi(-x+ct) + \phi(-x-ct)] + \frac{1}{2c} \int_{-x-ct}^{-x+ct} \psi(s) ds \\ &= \frac{1}{2} [-\phi(x-ct) - \phi(x+ct)] + \frac{1}{2c} \int_{x+ct}^{x-ct} \psi(-s) d(-s) \\ &= -\{\frac{1}{2} [\phi(x-ct) + \phi(x+ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) d(s)\} = -u(x,t)\} \end{aligned}$$

Thus u(x,t) is odd in x for all t. \Box

8. (a) Change variables v = ru, then

$$v_{tt} = ru_{tt}, v_{rr} = (ru_r + u)_r = ru_{rr} + 2u_r,$$

which implies

$$v_{tt} = rc^2(u_{rr} + \frac{2}{r}u_r) = c^2 v_{rr}$$

- (b) Using the same skill related to the wave equation(1), we have v(r,t) = f(r+ct) + g(r-ct), where f and g are two arbitrary functions of a single variable. Hence $u = \frac{1}{r}f(r+ct) + \frac{1}{r}g(r-ct)$.
- (c) Since $v(r, 0) = r\phi(r)$ and $v_t(r, 0) = r\psi(r)$ are both odd, we can extend v to all of \mathbb{R} by odd reflection. That is, we set

$$\tilde{v}(r,t) = \begin{cases} v(r,t), & r > 0; \\ 0, & r = 0; \\ -v(-r,t), & r < 0. \end{cases}$$

Hence d'Alembert's formula implies

$$\tilde{v}(r,t) = \frac{1}{2}[(r+ct)\phi(r+ct) + (r-ct)\phi(r-ct)] - \frac{1}{2c}\int_{r-ct}^{r+ct} s\psi(s)ds.$$

Therefore for r > 0,

$$u(r,t) = \frac{1}{r}v(r,t) = \frac{1}{2r}[(r+ct)\phi(r+ct) + (r-ct)\phi(r-ct)] - \frac{1}{2cr}\int_{r-ct}^{r+ct}s\psi(s)ds.$$

10. Using the same way above, since $(\frac{\partial}{\partial x} - 4\frac{\partial}{\partial t})(\frac{\partial}{\partial x} + 5\frac{\partial}{\partial t})u = 0$, we can obtain that the general solution is $u(x,t) = f(x + \frac{1}{4}t) + g(x - \frac{1}{5}t)$. The initial conditions implies

$$f(x) = \frac{1}{9} [4\phi(x) + 20\int_0^x \psi(s)ds + C], \ g(x) = \frac{1}{9} [5\phi(x) - 20\int_0^x \psi(s)ds - C].$$

Therefore, the solution is

$$u(x,t) = \frac{1}{9} \left[4\phi(x+\frac{1}{4}t) + 5\phi(x-\frac{1}{5}t) \right] + \frac{20}{9} \int_{x-\frac{1}{5}t}^{x+\frac{1}{4}t} \psi(s) ds. \quad \Box$$

Exercise 2.2

- 1. By the law of conservation of energy, $E = \frac{1}{2} \int_{-\infty}^{\infty} (\rho u_t^2 + T u_x^2) dx$ is a constant independent of t. Since $\phi \equiv 0$ and $\psi \equiv 0$, we have $E \equiv 0$. Thus, the first vanishing theorem implies $u_t \equiv 0$ and $u_x \equiv 0$. So $u \equiv 0$ since $\phi \equiv 0$. \Box
- 2. (a) By the chain rule,

$$\partial e/\partial t = u_t u_{tt} + u_x u_{xt}, \ \partial e/\partial x = u_t u_{tx} + u_x u_{xx}, \ \partial p/\partial t = u_t u_{xt} + u_{tt} u_x, \ \partial p/\partial x = u_t u_{xx} + u_{tx} u_x.$$

Since $u_{tt} = u_{xx}$ and $u_{xt} = u_{tx}$,

$$\partial e/\partial t = \partial p/\partial x, \ \partial e/\partial x = \partial p/\partial t.$$

(b) From the result of (a),

$$e_{tt} = p_{xt} = p_{tx} = e_{xx}, \ p_{tt} = e_{xt} = e_{tx} = p_{xx}$$

So both e(x,t) and p(x,t) satisfy the wave equation. \Box

- 3. (a) $(u(x-y,t))_{tt} = u_{tt}(x-y,t) = c^2 u_{xx}(x-y,t) = c^2 (u(x-y,t))_{xx}$.
 - (b) $(u_x(x,t))_{tt} = u_{xtt}(x,t) = c^2 u_{xxx}(x,t) = c^2 (u_x(x,t))_{xx}.$
 - (c) $(u(ax, at))_{tt} = a^2 u_{tt}(ax, at) = a^2 c^2 u_{xx}(ax, at) = c^2 (u(ax, at))_{xx}$.

5. For damped string, $u_{tt} - c^2 u_{xx} + r u_t = 0$, where $c = \sqrt{\frac{T}{\rho}}$, the energy is

$$E = \frac{1}{2} \int_{-\infty}^{\infty} \rho(u_t^2 + c^2 u_x^2) dx.$$

Hence,

$$dE/dt = \frac{1}{2} \int_{-\infty}^{\infty} \rho(2u_t u_{tt} + 2c^2 u_x u_{xt}) dx$$

= $\int_{-\infty}^{\infty} \rho(c^2 u_t u_{xx} - ru_t^2 + c^2 u_x u_{xt}) dx$
= $\int_{-\infty}^{\infty} \rho(c^2 u_t u_{xx} - ru_t^2 - c^2 u_{xx} u_t) dx + (c^2 u_t u_x) \Big|_{-\infty}^{\infty}$
= $-\int_{-\infty}^{\infty} \rho ru_t^2 dx \le 0.$

Exercise 2.3

- 2. By the definition of maximum and minimum, M(T) increases (i.e. nondecreasing) and m(T) decreases (i.e. nonincreasing). \Box
- 3. (a) Use the strong minimum principle, we omit the details here.
 - (b) Use the minimum principle. Since u(0,t) = u(1,t) = 0, $u(x,t) \ge u(x,t_0)$ for $\forall t_0 \le t < 1$. So $\mu(t)$ is dereasing.

Or let the maximum occur at point X(t), so that $\mu(t) = u(X(t), t)$. Differentiale $\mu(t)$, assuming that X(t) is differentiable, we have

$$\mu'(t) = u_x(X(t), t)X'(t) + u_t(X(t), t)$$

Note at point (X(t),t) we have $u_x = 0, u_{xx} \leq 0$. Hence, $\mu'(t) = u_{xx}(X(t),t) \leq 0$ and $\mu(t)$ is decreasing.

- (c) Here we omit the figure. Note that u(0,t) = u(1,t) = 0 and the result in (b).
- 4. (a) Note that u(0,t) = u(1,t) = 0 and $u(x,0) = 4x(1-x) \in [0,1]$. Then the conclusion can be verified by strong maximum principle.
 - (b) Let v(x,t) = u(1-x,t), then v(0,t) = v(1,t) = 0 and v(x,0) = 4x(1-x) = u(x,0). Then the uniqueness theorem for the diffusion theorem implies u(x,t) = u(1-x,t).
 - (c)

$$\frac{d}{dt}\int_0^1 u^2 dx = \int_0^1 2uu_t dx = 2\int_0^1 uu_{xx} dx = -2\int_0^1 u_x^2 dx$$

Since u(x,t) > 0 for all t > 0 and 0 < x < 1, so u_x is not zero function. Hence, $\frac{d}{dt} \int_0^1 u^2 dx < 0$ and $\int_0^1 u^2 dx$ is a strictly decreasing function of t. \Box

- 5. (a) We omit the details to verify that $u = -2xt x^2$ is a solution. When t is fixed, u attains its maximum at (-t, t) and $u(-t, t) = t^2$. So u attains its maximum at (-1, 1) in the closed rectangle $\{-2 \le x \le 2, 0 \le t \le 1\}$.
 - (b) In our proof the maximum principle for the diffusion equation, the key point is that $v(x,t) = u(x,t) + \epsilon x^2$ satisfies $v_t kv_{xx} < 0$. However, here $v_t kv_{xx} = u_t x(u + \epsilon x^2)_{xx} = -2\epsilon x$ so that the sign of $v_t kv_{xx}$ is not unchanged in the closed rectangle $\{-2 \le x \le 2, 0 \le t \le 1\}$. \Box
- 6. Let w = u v and use maximum principle for the diffusion equation. We omit the details. \Box
- 7. (a) Let w(x,t) = u(x,t) v(x,t) and $w_{\epsilon}(x,t) = w(x,t) + \epsilon x^2$. Since $w_t kw_{xx} = f g \le 0$, we can use the same method in the text book to derive the maximum principle for w. So $u \le v$ at x = 0, x = l and t = 0 implies $w \le 0$ in the rectangle, i.e. $u \le v$ for $0 \le x \le l$, $0 \le t < \infty$. Here we omit the details of the method in the text book.
 - (b) Let $u(x,t) = (1 e^{-t}) \sin x$, and then $u_t u_{xx} = \sin x$ and u = 0 at x = 0, $x = \pi$ and t = 0. Therefore, the result above implies $v(x,t) \ge (1 - e^{-t}) \sin x$. \Box .
- Extra 1. (1) Define $v(x,t) := e^{-at}u(x,t)$, then $v_t = kv_{xx}$, V(0,t) = v(1,t) = 0, $v(x,0) = sin(\pi x)$. By the Strong Maximum Principle, 0 < v(x,t) < 1, $\forall t > 0$, 0 < x < 1. Thus, $0 < u(x,t) = e^{at}v(x,t) < 1$, $\forall t > 0$, 0 < x < 1.

(2)Define v(x,t) := u(1-x,t), then we can easily check that v solves the same problem as u. By the uniqueness of the solution, u = v

Extra 2. (a)Follow the proof of the Maximum Principle in the textbook. We only need to change the diffusion inequality (2) in Page 42 to be

$$v_t - kv_{xx} = u_t - ku_{xx} - 2\varepsilon k \le -2\varepsilon k < 0$$

(b)Define $u(x,t) := v(x,t) - t \max_{-\infty < x < +\infty, 0 < t < T} f(x,t)$, then

$$u_{t} - ku_{xx} = v_{t} - \max_{-\infty < x < +\infty, 0 < t < T} f(x, t) - kv_{xx} = f - \max_{-\infty < x < +\infty, 0 < t < T} f(x, t) \le 0$$

$$\Rightarrow \max_{-\infty < x < +\infty, 0 \le t \le T} u(x, t) = \max_{-\infty < x < +\infty, t = 0} u(x, t) = 0, by(a)$$

$$\Rightarrow v(x, t) \le t \max_{-\infty < x < +\infty, 0 < t < T} f(x, t) \le T \max_{-\infty < x < +\infty, 0 < t < T} f(x, t)$$

Exercise 2.4

1. By the general formula,

$$\begin{split} u(x,t) &= \frac{1}{\sqrt{4\pi kt}} \int_{-l}^{l} e^{-(x-y)^2/4kt} dy \\ &= \frac{1}{\sqrt{\pi}} \int_{(-l-x)/\sqrt{4kt}}^{(l-x)/\sqrt{4kt}} e^{-p^2} dp \\ &= \frac{1}{2} \{ \mathscr{E}rf[\frac{x+l}{\sqrt{4kt}}] - \mathscr{E}rf[\frac{x-l}{\sqrt{4kt}}] \}. \quad \Box \end{split}$$

2. By the general formula,

$$\begin{split} u(x,t) &= \frac{1}{\sqrt{4\pi kt}} \int_0^\infty e^{-(x-y)^2/4kt} dy + \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^0 3e^{-(x-y)^2/4kt} dy \\ &= \frac{1}{2} + \frac{1}{2} \mathscr{E}rf[\frac{x}{\sqrt{4kt}}] + \frac{3}{2} - \frac{3}{2} \mathscr{E}rf[\frac{x}{\sqrt{4kt}}] \\ &= 2 - \mathscr{E}rf[\frac{x}{\sqrt{4kt}}]. \quad \Box \end{split}$$

- 5. Similar to Exercise 2.2.3.
- 8. By the definition of S(x,t),

$$\max_{\delta \le x < \infty} = \frac{1}{\sqrt{4\pi kt}} e^{-\delta^2/4kt}$$

 \mathbf{SO}

$$\lim_{t \to 0^+} \max_{\delta \le x < \infty} = \lim_{t \to 0^+} \frac{1}{\sqrt{4\pi kt}} e^{-\delta^2/4kt} = \lim_{x \to +\infty} \frac{\sqrt{x}}{\sqrt{4\pi k}} e^{-x\delta^2/4k} = 0. \quad \Box$$

- 11. (a) Since u(x,t) and -u(-x,t) are the solutions and $u(x,0) = \phi(x) = -\phi(-x) = -u(-x,0)$, it follows from the uniqueness theorem that u(x,t) = -u(-x,t).
 - (b) Similar to (a).
 - (c) Similar to (a). \Box
- 14. Since

$$\begin{aligned} |e^{-(x-y)^2/4kt}\phi(y)| &\leq Ce^{-(x-y)^2/4kt+ay^2} = Ce^{(a-\frac{1}{4kt})y^2+\frac{x}{2kt}y-\frac{x^2}{4kt}}\\ u(x,t) &= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4kt}\phi(y) \ dy \end{aligned}$$

makes sense for $a - \frac{1}{4kt} < 0$, i.e. 0 < t < 1/(4ak), but not necessarily for large t, for example, $\phi(x) = e^{ax^2}$. \Box

15. Suppose that both u and v are solution of the diffusion problem with the same Neumann boundary condition. Let w(x,t) = u(x,t) - v(x,t), then w satisfies

$$w_t = kw_{xx}, \quad w(x,0) = w_x(0,t) = w_x(l,t) = 0.$$

Thus by the integration by part and the Neumann boundary condition,

$$\frac{d}{dt} \int_0^l \frac{1}{2} w^2(x,t) dx = -k \int_0^l w_x^2(x,t) dx \le 0.$$

Hence, the initial condition implies

$$\int_0^l \frac{1}{2} w^2(x,t) dx \le \int_0^l \frac{1}{2} w^2(x,0) dx = 0.$$

Therefor, w = 0, i.e. u = v for all t > 0. \Box

16. Let $v(x,t) = e^{bt}u(x,t)$, then v satisfies

$$v_t - kv_{xx} = 0$$
, $v(x, 0) = u(x, 0) = \phi(x)$.

Hence, the general solution of v is

$$v(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4kt} \phi(y) \, dy,$$

and the general solution of u is

$$u(x,t) = \frac{e^{-bt}}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4kt} \phi(y) \, dy. \quad \Box$$

18. Let v(x,t) = u(x + Vt, t), then v satisfies

$$v_t - kv_{xx} = 0$$
, $v(x, 0) = u(x, 0) = \phi(x)$

Since

$$v(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4kt} \phi(y) \, dy,$$
$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-(x-Vt-y)^2/4kt} \phi(y) \, dy. \quad \Box$$

Exercise 2.5

1. Let $u(x,t) = -x^2 - (t-1)^2$ be the unique solution of the wave equation with boundary conditions:

$$u_{tt} = u_{xx}, \text{ for } -1 < x < 1, 0 < t < \infty,$$
$$u(x,0) = -x^2 - 1, \ u_t(x,0) = 2,$$
$$u(-1,t) = u(1,t) = -t^2 + 2t - 2.$$

But u attains its maximum 0 at (0,1). \Box